Skip to contents

Package Overview

DIVAS DIVAS-package
DIVAS: Data Integration via Analysis of Subspaces

Core Workflow Function

The main function to run the DIVAS analysis pipeline.

DIVASmain()
Data integration via analysis of subspaces

Signal Extraction Functions

Functions for extracting signals from data matrices.

DJIVESignalExtractJP()
Signal Matrix Extraction for DIVAS
MatSignalExtractJP()
Matrix Signal Extraction
MedianMarcenkoPastur()
Calculate the Median of the Marčenko-Pastur Distribution
PercentileMarcenkoPastur()
Percentile of the Marcenko-Pastur Distribution
incMarPas()
Incomplete Marčenko-Pastur Distribution Function
ksOpt()
Optimal Shrinkage Estimation using Kolmogorov-Smirnov Criterion
optimal_shrinkage()
Optimal Shrinkage of Singular Values
optshrink_impl()
Optimal Shrinkage of Singular Values

Joint Structure Estimation Functions

Functions for estimating joint and individual structures.

DJIVEJointStrucEstimateJP()
Estimate full and partially shared joint structures Establish a DC programming problem to estimate each partially joint structure using Penalty CCP algorithm.

Reconstruction Functions

Functions for reconstructing data based on identified structures.

DJIVEReconstructMJ()
DJIVEReconstructMJ - Reconstruct joint blocks from data blocks
MatReconstructMJ()
MatReconstructMJ - Reconstruct joint block matrices and their loadings from data

Diagnostic Functions

Functions for diagnosing and evaluating the DIVAS results.

DJIVEAngleDiagnosticJP()
Create Diagnostic Plots for DJIVE Analysis
randDirAngleMJ()
Calculate Random Direction Angles

Utility Functions

Helper functions used within the DIVAS workflow.

MatCenterJP()
Center a Matrix by Rows, Columns, or Both
acosd()
Arccosine in Degrees